11.2 ARITHMETIC SEQUENCES

In an <u>arithmetic sequence</u>, the difference between consecutive terms in constant. The constant difference is called the <u>common difference</u> and is denoted by d.

Examples: Decide whether each sequence is arithmetic. If so, identify the common difference.

- 1. $-7, -3, 1, 5, 9, \dots$ arithmetic, d = 4
- 2. 2, 3, 5, 8, 12, 17, ... not arithmetic
- 3. -14, -8, -2, 0, 2, 8, 14, ... not arithmetic
- 4. 19, 13, 7, 1, -5, ... arithmetic, d=-6
- 5. List the first four terms of each arithmetic sequence.

a) $t_n = -3 + (n - 1)(5)$	b) $t_n = \pi n + 4$
$t_{i} = -3 + (1 - 1)(5)$ $t_{i} = -3$	$\begin{array}{c} t_{i} = \tau \cdot \iota + 4 \\ t_{i} = \tau \tau + 4 \end{array}$
$t_1 = -3 + (2 - 1)(5)$	$t_{1} = 10 \cdot 2 + 4$
もっこと	$t_2 = 2\pi + 4$
$t_3 = -3 + (2^2 - 1)(5)$	$t_3 = T \cdot 3 + 4$
セューブ	±3 = 3π+4
$t_{y} = -3 + (4 - 1)(5)$	-ty= π
$t_{4} = 12$	ty= 411 + 4
-7	

The nth term of an arithmetic sequence with first term t₁ and common difference d is given by:

6. Write an explicit formula for the nth term of the arithmetic sequence 50, 44, 38, 32,...d=-6 $t_n = 50 + (n-1)(-6)$

$$t_n = 50 - 6n + 6$$

 $t_n = 56 - 6n$

7. Write an explicit formula for the nth term of the arithmetic sequence shown below. Then find the 20th term. 20

32, 47, 62, 77,...
$$d = 15$$

 $t_n = t_1 + (n-1) d$
 $t_n = 32 + (n-1) \cdot 15$
 $t_n = 32 + 15n - 15$
 $t_n = 17 + 15n$
 $t_{20} = 317$

8. Find the 40th term of the sequence defined
by
$$t_1 = 7$$
 and $t_n = t_{n-1} + 6$, - recursive
 $t_2 = t_1 + 6$ formula
 $t_2 = 7 + 6$ $d = 6$
 $t_2 = 13$
 $t_{40} = t_1 + (n-1) d$
 $t_{40} = 7 + (40-1)(6)$
 $t_{40} = 7 + 240 - 6$
 $t_{40} = 241$

9. Find the 101st term of the sequence defined by $t_1 = -4$ and $t_n = t_{n-1}$.

$$t_{n} = t_{1} + (n - 1) d$$

$$t_{01} = -4 + (101^{20} i)(-2)$$

$$t_{101} = -4 + -200$$

$$t_{101} = -204$$

10. Find the 10th term of the arithmetic sequence
in which
$$t_3 = -5$$
 and $t_6 = 16$.
 $t_n = +_1 + (n - 1) d$
 $t_n = +_k + (n - k) d$
 $t_6 = +_3 + (6 - 3) d$
 $16 = -5 + 3d$
 $2! = 3d$
 $t_{10} = +_3 + (10 - 3) 7$
 $t_{10} = -5 + 49$
 $t_{10} = -49$

11. Find the 15th term of the arithmetic sequence in which $t_5 = 7$ and $t_{10} = 22$.

$$t_{n} = t_{k} + (n-k) d$$

$$t_{10} = t_{5} + (10-5) d$$

$$22 = 7 + 5d$$

$$15 = 5d \qquad t_{15} = t_{5} + (15-5) \cdot 3$$

$$3 = d \qquad t_{15} = 7 + 3D$$

$$t_{15} = 37$$

The terms between any two nonconsecutive terms of an arithmetic sequence are called the <u>arithmetic means</u>.

12. Find the four arithmetic means between 10 and -30. lo 2 - 6 - 44 - 22 - 30 + 4 + 4 + 4 + 4 + 4 lo + 5d = -30 5d = -40d = -8

13. Find the five arithmetic means between6 and 60.