11.2 ARITHMETIC SEQUENCES

In an arithmetic sequence, the difference between consecutive terms in constant. The constant difference is called the common difference and is denoted by d.
Examples: Decide whether each sequence is arithmetic. If so, identify the common difference.

1. $-7,-3,1,5,9, \ldots$ arithmetic, $d=4$
2. $2,3,5,8,12,17, \ldots$ not arithmetic
3. $-14,-8,-2,0,2,8,14, \ldots$ not arithmetic
4. $19,13,7,1,-5, . . a r i t h m e t i c) ~ d=-6$
5. List the first four terms of each arithmetic sequence.
a)

$$
\begin{aligned}
& t_{n}=-3+(n-1)(5) \\
& t_{1}=-3+\left(n^{0}\right)(5) \\
& t_{1}=-3 \\
& t_{2}=-3+\left(2^{1}-7\right)(5) \\
& t_{2}=2 \\
& t_{3}=-3+\left(2^{2}-1\right)(5) \\
& t_{3}=7 \\
& t_{4}=-3+\left(4^{3}-1\right)(5) \\
& t_{4}=12
\end{aligned}
$$

b)

$$
\text { 0) } \begin{aligned}
& t_{n}=\pi n+4 \\
& t_{1}=\pi \cdot 1+4 \\
& t_{1}=\pi+4 \\
& t_{2}=\pi \cdot 2+4 \\
& t_{2}=2 \pi+4 \\
& t_{3}=\pi \cdot 3+4 \\
& t_{3}=3 \pi+4 \\
& t_{4}=\pi \cdot 4+4 \\
& t_{4}=4 \pi+4
\end{aligned}
$$

The nth term of an arithmetic sequence with first term $t_{1}$ and common difference $d$ is given by:

$$
t_{n}=t_{1}+(n-1) d
$$

first term
6. Write an explicit formula for the nth term of the arithmetic sequence $50,44,38,32, . . d=-6$

$$
\begin{aligned}
& t_{n}=50+(n-1)(-6) \\
& t_{n}=50-6 n+6 \\
& t_{n}=56-6 n
\end{aligned}
$$

7. Write an explicit formula for the nth term of the arithmetic sequence shown below. Then find the 20 th term. ${ }^{20}$

$$
\begin{aligned}
& 32,47,62,77, \ldots \quad d=15 \\
& t_{n}=t_{1}+(n-1) d \\
& t_{n}=32+(n-i) \cdot 15 \\
& t_{n}=32+i 5 n-15 \\
& t_{n}=17+15 n \quad t_{20}
\end{aligned}=17+15(20) \quad t_{20}=317 \quad l
$$

8. Find the 40th term of the sequence defined by $t_{1}=7$ and $t_{n}=t_{n-1}+6 \leftarrow$ recursive. $t_{2}=t_{1}+6 \quad$ formula
$t_{2}=7+6$ $d=6$

$$
t_{2}^{2}=13
$$

$$
\begin{aligned}
& t_{40}=t_{1}+(n-i) d \\
& t_{40}=7+(40-1)(6) \\
& t_{40}=7+240-6 \\
& t_{40}=241
\end{aligned}
$$

9. Find the 101st term of the sequence defined by $t_{1}=-4$ and $t_{n}=t_{n-2} \quad d=-2$

$$
\begin{aligned}
& t_{n}=t_{1}+(n-1) d \\
& t_{(01}=-4+(101-1)^{10}(-2) \\
& t_{(01)}=-4+-200 \\
& t_{101}=-204
\end{aligned}
$$

10. Find the 10th term of the arithmetic sequence in which $t_{3}=-5$ and $t_{6}=16$.

$$
\begin{aligned}
& t_{n}=t_{1}+(n-1) d \\
& \rightarrow t_{n}=t_{k}+\left(n-k_{i}\right) d \\
& t_{6}=t_{3}+(6-3) d \\
& 16=-5+3 d \\
& 21=3 d \\
& t_{10}=t_{3}+(10-3) 7 \\
& 7=d \\
& t_{10}=-5+4 \text { 可 } \\
& t_{10}=44
\end{aligned}
$$

11. Find the 15th term of the arithmetic sequence in which $\mathrm{t}_{5}=7$ and $\mathrm{t}_{10}=22$.

$$
\begin{aligned}
& t_{n}=t_{k}+(n-k) d \\
& t_{10}=t_{5}+(10-5) d \\
& 22=7+5 d \\
& 15=5 d \quad t_{15}=t_{5}+(15-5) \cdot 3 \\
& 3=d \quad t_{15}=7+30 \\
& \\
&
\end{aligned}
$$

The terms between any two nonconsecutive terms of an arithmetic sequence are called the arithmetic means.
12. Find the four arithmetic means between 10 and -30 . 10

$$
\begin{aligned}
10+5 d & =-30 \\
5 d & =-40 \\
d & =-8
\end{aligned}
$$

13. Find the five arithmetic means between 6 and 60.

$$
\begin{gathered}
6+15+24+33+42+51+d+d+d \\
+6+6 d=60 \\
6 d=54 \\
d=9
\end{gathered}
$$

