LESSON #1 SQUARE ROOTS

If $b^2 = a$, then b is the square root of a.

Ex: $3^2 = 9$, so 3 is a square root of 9. $(-3)^2 = 9$, so -3 is a square root of 9 too.

All positive real numbers have two square roots: a positive square root and a negative square root.

Square roots are written with a radical symbol $\sqrt{}$. The number or expression inside the symbol is the radicand.

EXAMPLES: Evaluate the expressions.

1.
$$\sqrt{64} = 8$$
 2. $-\sqrt{64} = -8$

plus or minus

$$3.\pm\sqrt{64} = \pm 8$$
 4. $\sqrt{0} = 0$

EXAMPLES: Evaluate the expressions.

5.
$$\sqrt{\frac{225}{169}} = \frac{15}{13}$$
 6. $\pm \sqrt{\frac{64}{289}} = \pm \frac{8}{17}$
7. $\sqrt{-16}$ 8. $-\sqrt{\frac{625}{9}} = -\frac{2.5}{3}$

The square of an integer is called a perfect square.
$$\sqrt{4} = 2$$

$$\rightarrow \text{PERFECT SQUARE}$$

$$\sqrt{6} = 2.449489...$$
NOT A PERFECT SQUARE

Evaluate the expression. Give the exact value if possible.

Otherwise, approximate to the nearest hundredth.

$$9. - \sqrt{49} = -7$$
 $10.\sqrt{3} \approx 1.73$

11.
$$\sqrt{26} \approx 5.10$$
 12. $-\sqrt{5} \approx -2.24$

13. -
$$\sqrt{81} = -9$$
 14. $\pm \sqrt{58} \approx \pm 7.62$

An expression written with a radical symbol is called a <u>radical expression</u>, or sometimes just a radical.

15. Evaluate
$$\sqrt{b^2 - 4ac}$$
 when $a = 1$, $b = -2$, and $c = -3$. $\sqrt{(-2)^2 - 4(1)(-3)}$

An expression written with a radical symbol is called a radical expression, or sometimes just a radical.

16. Evaluate
$$\sqrt{b^2 - 4ac}$$
 when $a = 2$, $b = 3$, and $c = -5$.

 $\sqrt{(3)^2 - 4(2)(-5)}$
 $\sqrt{(49)}$

An expression written with a radical symbol is called a <u>radical expression</u>, or sometimes just a radical.

17. Evaluate
$$\sqrt{b^2 - 4ac}$$
 when $a = -1$, $b = 8$, and $c = 20$.

 $\sqrt{(8)^2 - 4(-1)(20)}$
 $\sqrt{(4 + 80)}$
 $\sqrt{144}$

Solve the equation. Write the solution as integers if possible. Otherwise, write them as radical expressions. include
$$\pm$$

$$18 \sqrt{x^2} = 4$$

$$19 \sqrt{k^2} = 7$$

$$19 \sqrt{k^2} = 7$$

$$20. 2m^2 = 22$$

$$21. 4g^2 = 81$$

$$\sqrt{m^2} = 11$$

$$m = \pm \sqrt{11}$$

$$q = \pm \frac{3}{4}$$

Solve the equation. Write the solution as integers if possible. Otherwise, write them as radical expressions.

22,
$$p^{2} \neq 0$$
 $p = \pm 0$
 $p = 0$

23, $h^{2} \neq -9$

No solution

 $p = 0$

24. $\frac{25m^{2}}{25} = \frac{4}{25}$
 $\sqrt{m^{2}} = \sqrt{\frac{4}{25}}$
 $m = \pm \frac{2}{5}$
 $m = \pm \frac{2}{5}$

Solve the equation. Write the solution as integers if possible. Otherwise, write them as radical expressions.

26.
$$3d^{2} - 48 = 0$$
 $+ 48 + 48$
 $3d^{2} = 48$
 $3d^{2} =$

Solve the equation. Write the solution as integers if possible. Otherwise, write them as radical expressions.

28.
$$5n^2 + 5/= 20$$
 -5
 -5
29. $3t^2 - 50 = 58$
 $+50 + 50$

$$3t^2 = 108$$

$$3 = 108$$

$$3 = 108$$

$$3 = 136$$

$$1 = 136$$

$$1 = 136$$