10.3 ARCS & CHORDS

When a minor arc and a chord share the same endpoints, we call the arc the arc of the chord.

In the railroad crossing sign, \overrightarrow{AB} is the arc of \overrightarrow{AB} .

Theorem 10.4 In a circle or in congruent circles, two minor arcs are congruent if and only if their corresponding chords are congruent.

1. (⊙E,	ÂB	≓ É	C	
------	-----	----	------------	---	--

2. $\overline{AE} \cong \overline{CE}$ BE $\cong \overline{DF}$

Statements

- 3. ZAEB = ZCED 3 Vert 1 3
- 4. $\triangle AEB \cong \triangle CED \oplus SAS$

5. $\overline{AB} \cong \overline{DC}$

Reasons

🛈 given

- ⊘radii, in same circle are ≅

E C P C

<u>Example 1</u>

A stop sign is an octagon with congruent sides. It can be inscribed in a circle by using the center of the sign and a vertex of the sign as endpoints for the radius of the circle, as in QR. Find the measure of each of the right corresponding arcs of a circle around the stop sign shown below.

Theorem 10.5

In a circle, if a diameter is perpendicular to a chord, then it bisects the chord and its arc.

Theorem 10.6

If one chord is a perpendicular bisector of another chord, then the first chord is a diameter.

l2 in

Example 3

Suppose a chord of a circle is 10 inches long and 12 inches from the center of the circle. Find the length of the radius.

$$5^{2} + 12^{2} = c^{2}$$

 $25 + 144 = c^{2}$
 $169 = c^{2}$
 $13 = c$

radius = 13 in

Example 4

You discovered a crop circle in a nearby farm. A chord of the circle is 500 feet long and 600 feet from the center of the circle. Find the length of the radius.

$$250^{2} + 600^{2} = c^{2}$$

$$62,5\ 00 + 360,000 = c^{2}$$

$$\sqrt{422,5\ 00} = c^{2}$$

$$650 = c$$

$$radius = 650.54$$

May 09, 2024

Example 5 In $\bigcirc P$, $\overline{AB} = \overline{AC}$. Find the value of x as a radical. $3^{2} + (x + 2\sqrt{3})^{2} = 6^{3}$ 6 $9 + (x+2\sqrt{3})^2 = -9$ $\sqrt{(\chi+2\sqrt{3})}$

Theorem 10.7

In a circle or in congruent circles, two chords are congruent if and only if they are equidistant from the center.

Example 6

Chords \overline{CH} are \overline{IR} are equidistant from the center of \bigcirc . If IR = 48, find CH.

CH = 48

