10．3 ARCS \＆CHORDS

When a minor arc and a chord share the same endpoints，we call the arc the arc of the chord．

In the railroad crossing sign，$\overparen{A B}$ is the arc of $\overline{A B}$ ．

Theorem 10.4

In a circle or in congruent circles，two minor arcs are congruent if and only if their corresponding chords are congruent．

$$
\begin{aligned}
& \text { Statements Reasons } \\
& \text { 1. } \odot \mathrm{E}, \overparen{\mathrm{AB}} \cong \overparen{\equiv D C} \text { (1) given } \\
& \text { 2. } \overline{\mathrm{AE}} \underset{\mathrm{BE}}{\cong} \cong \frac{\overline{\mathrm{CE}}}{\overline{\mathrm{DE}}} \\
& \text { (2) radio; in arne } \\
& \text { circle are } \cong \\
& \text { 3. } \angle \mathrm{AEB} \cong \angle \mathrm{CED} \\
& \text { (3) Vert } E= \\
& \text { 4. } \triangle \mathrm{AEB} \cong \triangle \mathrm{CED} \text { (4) } 5-15 \\
& \text { 5. } \overline{\mathrm{AB}} \cong \overline{\mathrm{DC}} \\
& \text { 家に, 5••• }
\end{aligned}
$$

A polygon is an inscribed polygon if each of its vertices lies on a circle.

Quadrilateral PQRS is inscribed in \because.

Example I

A stop sign is an octagon with congruent sides. It can be inscribed in a circle by using the center of the sign and a vertex of the sign as endpoints for the radius of the circle, as in QR. Find the measure of each of the right corresponding arcs of a circle around the stop sign shown below.

Example 2
a) Find the measure of each minor arc created when an equilateral triangle is inscribed in a circle.

$$
\frac{360}{3}=120^{\circ}
$$

b) Find the measure of each minor arc created when a regular dodecagon is inscribed in a circle.

$$
\frac{360}{12}=30^{\circ}
$$

Theorem 10.5

In a circle, if a diameter is perpendicular to a chord, then it bisects the chord and its arc.

Theorem io. 6

If one chord is a perpendicular bisector of a nother chord, then the first chord is a diameter.

Example 3
Suppose a chord of a circle is io inches long and 12 inches from the center of the circle. Find the length of the radius.

$$
\begin{aligned}
5^{2}+12^{2} & =c^{2} \\
25+144 & =c^{2} \\
169 & =c^{2} \\
13 & =c \\
\text { radius } & =13 \mathrm{in}
\end{aligned}
$$

sin

Example 4
You discovered a crop circle in a nearby farm. A chord of the circle is 500 feet long and 600 feet from the center of the circle. Find the length of the radius.

$$
\begin{gathered}
250^{2}+600^{2}=c^{2} \\
62,500+360,000=c^{2} \\
\sqrt{422,500}=\sqrt{c^{2}} \\
650=c \\
\text { radius }=c \text { raf. }
\end{gathered}
$$

Example 5
In $\odot P, \overline{A B}=\sim \overline{A C}$. Find the value of x

$$
\begin{aligned}
& \text { as a radical. } \\
& \begin{array}{l}
3^{2}+(x+2 \sqrt{3})^{2}
\end{array}=6^{2} \\
& 9+(x+2 \sqrt{3})^{2}=36 \\
& -9 \\
& \sqrt{(x+2 \sqrt{3})^{2}}=\sqrt{27} \\
& x+2 \sqrt{3}=3 \sqrt{3} \\
& x=\sqrt{3}-2 \sqrt{3}
\end{aligned}
$$

Theorem 10.7
In a circle or in congruent circles, two chords are congruent if and only if they are equidistant from the center.
Example 6
Chords $\overline{\mathrm{CH}}$ are $\overline{\mathrm{R}}$ are equidistant from the center of \odot. If $I R=48$, find CH .

$$
C H=48
$$

