S.I-S.2 GRAPHING QUADRATIC FUNCTIONS
 A quadratic function is a function that can be written in the standard form of $y=a x^{2}+b x+c$ where $a \neq 0$.
 Every quadratic function has a U-shaped graph called a parabola.
 - Dens up if the value of a is positive
 - Opens down if the value of a is negative

EXAMPLES: Decide whether the parabola opens up or down.

1. $y=-x^{2}$
$a=-1 \longrightarrow$ open down
2. $y=2 x^{2}-4$

$$
a=2 \longrightarrow \text { open up }
$$

3. $y=-3 x^{2}+5 x-1$

$$
a=-3 \rightarrow \text { open down }
$$

To Graph...

1. Find the axis of symmetry: $x=\frac{-b}{2 a}$
2. Use the value of x from above to find the vertex. To do this, plug that x-value into the original equation and solve for y. This point will be the vertex (also known as the maximum or minimum of the graph).
3. Make a table of values. Suggestion: Pick twa x-values on either side of the vertex for your table.
4. Plot the points and connect them with a smooth curve.
5. Find the equation of the axis of symmetry and the coordinates of the vertex of the graph of $y=-2 x^{2}-8 x-3 . a=-2 \quad b=-8 \quad c=-3$
$x=\frac{-b}{2 a}=\frac{8}{2(-2)}=\frac{8}{-4}=-2$
a.o.s. $x=-2$
$y=-2 x^{2}-8 x-3$
$\left.\begin{array}{l}y=-2(-2)^{2}-8(-2)-3 \\ y=5\end{array}\right\}$ vertex $(-2,5)$
6. Sketch the graph of $y=x^{2}-2 x-3$.

STEP I: Find the axis of symmetry.
STEP 2: Find the vertex.
STEP 3: Make a table of values. STEP 4: Graph.

$$
\begin{aligned}
& x=\frac{-b}{2 a}=\frac{2}{2(1)}=\frac{2}{2}=1 \\
& \begin{array}{c|c|c|c}
a \cdot 0 \cdot s . x=1
\end{array} \\
& \begin{array}{c|c|c|c}
-1 & (-1)^{2}-2(-1)-3 & 0 \\
0 & (0)^{2}-2(0)-3 & -3 \\
1 & (1)^{2}-2(1)-3 & -4 \\
2 & (2)^{2}-2(2)-3 & -3 \\
2 & (3)^{2}-2(3)-3 & 0
\end{array}
\end{aligned}
$$

6. Sketch the graph of $y=-x^{2}+1 . a=-1 \quad b=0 \quad c=\{$

STEP I: Find the axis of symmetry.
STEP 2: Find the vertex.
STEP 3: Make a table of values.
STEP 4: Graph.

$$
\begin{aligned}
& x=\frac{-b}{2 a}=\frac{0}{2(-1)}=\frac{0}{-2}=0 \\
& \text { a.o.s. } x=0
\end{aligned}
$$

7. Sketch the graph of $y=x^{2}+3 x-1$.

STEP I: Find the axis of symmetry.
STEP 2: Find the vertex.
STEP 3: Make a table of values.
STEP 4: Graph.

$$
\begin{aligned}
& x=\frac{-b}{2 a}=\frac{-3}{2(1)}=\frac{-3}{2} \\
& \text { a.o.s. } x=-\frac{3}{2} \\
& \begin{array}{c|l|l|}
x & \\
\hline 0 & (0)^{2}+3(0)-1 & -1 \\
-1 & (-1)^{2}+3(-1)-1 & -3 \\
-\frac{3}{2} & \left(-\frac{3}{2}\right)^{2}+3\left(-\frac{3}{2}\right)-1 & -\frac{13}{4}-34 \\
-2 & (-2)^{2}+3(-2)-1 & -3 \\
-\frac{2}{3} & (-3)^{2}+3(-3)-1 & -1
\end{array}
\end{aligned}
$$

8. Sketch the graph of $y=-x^{2}+2 x \cdot a=-1 \quad b=2 \quad c=0$

STEP I: Find the axis of symmetry.
STEP 2: Find the vertex.
STEP 3: Make a table of values.
STEP 4: Graph.

$$
\begin{aligned}
& x=\frac{-b}{2 a}=\frac{-2}{2(-1)}=\frac{-2}{-2}=1 \\
& \begin{array}{l|l|l|l}
a \cdot 0.5 \cdot x=1 \\
x-1 & -(-1)^{2}+2(-1) & y \\
0 & -(0)^{2}+2(0) & 0 \\
1 & -(1)^{2}+2(1) & 1 \\
2 & -(2)^{2}+2(2) & 0 \\
3 & -(3)^{2}+2(3) & -3
\end{array}
\end{aligned}
$$

