CHAPTER 10 CIRCLES 10.1: Tangents to Circles

circle- the set of all points in a plane that are a given distance from a given point in that plane

<u>center</u>- the given point

<u>radius</u>- a segment that has one endpoint at the center and the other endpoint on the circle

<u>chord</u>- a segment that has its endpoints on the circle

<u>diameter</u>- a chord that contains the center

A line is tangent to a circle if it intersects the circle in exactly one point.
This point is called the point of tangency.

A **secant** is a line that intersects the circle in two points.

Tell whether the line, ray, or segment is best described as a radius, chord, diameter, secant, or tangent of \bigcirc C.

- a) \overline{AC} radius
- $b) \overline{AB}$ diameter
- c) <u>DE</u> tangent
- d) \overrightarrow{AE} Secant

A line, ray, or segment that is tangent to two coplanar circles is called a <u>common tangent</u>.

external tangents

internal tangents

How many common tangents can the circles below have?

Theorems 10.1-10.2

A line is tangent to a circle if and only if the line is perpendicular to the radius of the circle drawn to the point of tangency.

Refer to $\bigcirc C$ with tangent \overline{AB} . Find x as an exact answer.

$$6^{2} + 13^{2} = x^{2}$$

 $36 + 169 = x^{2}$
 $205 = x^{2}$
 $\sqrt{205} = x$

Example 4

Refer to $\bigcirc P$ with radius \overline{PR} . Show that QR is tangent to $\bigcirc P$.

$$5^{2} + 12^{2} \stackrel{?}{=} 13^{2}$$

$$25 + 144 = 169$$

$$169 = 169\sqrt{}$$

Refer to \bigcirc *C* with *B* as the point of tangency. Find the radius of \bigcirc *C*.

$$r^{2} + 6400 = (50+r)(50+r)$$

$$r^{2} + 6400 = 2500 + 50r + 50r + 7$$

$$6400 = 2500 + 100r$$

$$-2500 - 2500$$

$$3900 = 100r$$

$$100$$

$$39 = 100$$

 $r^2 + 80^2 = (50 + r)^2$

EC and ED are examples of two tangent segments drawn from a common point E outside the circle.

Theorem 10.3

If two segments from the same exterior point are tangent to a circle, then they are congruent.

 \overline{RS} is tangent to \bigcirc C at S and \overline{RT} is tangent to \bigcirc C at T. Find the value of x.

Example 7

 \overline{DA} is tangent to \bigcirc C at A and \overline{DB} is tangent to \bigcirc C at B. Find the value of x.

$$\begin{array}{c} x^2 + 2 = 11 \\ -2 - 2 \end{array}$$

$$\sqrt{x^2} = \sqrt{9}$$

$$X = \pm 3$$

A polygon is <u>circumscribed</u> about a circle if each side of the polygon is tangent to the circle.

These polygons are circumscribed about the circles.

The circles are inscribed in the polygons.

Example 8

Triangle TRW is circumscribed about $\bigcirc A$. If the perimeter of $\triangle TRW$ is 50, TK = 3, and WM = 9.5, find TR.

$$3+3+9.5+9.5+X+X=50$$
 TR=3+12.5
 $25+2X=50$ TR=15.5
 $2X=25$

Example 9

Triangle TRW is circumscribed about $\bigcirc A$. If the perimeter of $\triangle TRW$ is 42, MR = 6, and WM = 7, find TR.

$$6+6+7+7+x+x=42$$

 $26+2x=42$
 $2x=16$
 $X=8$

