VOLUME OF A RIGHT PRISM
$V=B h$ where B is the area of the base $\& h$ is the height of the prism

Example 1
Find the volume of the right triangular prism.

$$
\begin{aligned}
& V=B h \\
& A=\frac{b h}{2} \\
& A=\frac{9.12}{2}=54 \\
& \begin{array}{l}
B=54 \\
h=10
\end{array} \\
& B \text { : } \\
& h=10 \\
& V=(54)(10)_{3} \\
& V=540 \mathrm{~cm}^{3}
\end{aligned}
$$

Example 2
Find the cubic feet of cement that are for a 60-footlong driveway that is 9 inches thick and 20 feet wide.

$$
\begin{gathered}
V=B h \quad B=1200 \\
h=\frac{3}{4} \\
V=(1200)\left(\frac{3}{4}\right) \\
V=900 f^{3}
\end{gathered}
$$

Example 3
To resurface a football field, it was dug 6 inches deep. How many cubic feet of dirt are necessary to fill the field? A football field is 65 yards wide and 120 yards

$$
\sin \cdot \frac{1 \sqrt{6}}{12 \sin } \cdot \frac{1 y t}{3 \sqrt{t}}=\frac{6}{36}=\frac{1}{6}
$$

Example 4
A farm feeds its cows using a trapezoidal trough. Find the maximum volume in square feet of the trough with the indicated measures below.

$$
\left.\begin{array}{c}
V=B h \quad B=168 \\
V=(168)(96)=96 \\
B: A=\frac{1}{2} h\left(b_{1}+b_{2}\right) \\
A=\frac{1}{2} \cdot 12(18+10) \mathrm{in}^{3} \\
A=169
\end{array}\right\}
$$

$$
\begin{aligned}
& 16,128 \mathrm{in}^{3} \cdot \frac{1 \mathrm{ft}}{12 i n} \cdot \frac{1 \mathrm{ft}}{12 i n} \cdot \frac{\mathrm{ft}}{12 i n} \\
& \frac{16,128}{1728} \rightarrow \frac{28}{3} \mathrm{ft}^{3}
\end{aligned}
$$

VOLUME OF A RIGHT CYLINDER

$V=\pi r^{2} h$ where h is the height of the prism $V=B h$

Example 5

Find the volume of the right cylinder. Round to the nearest tenth.

$$
V \approx 3.7 .8 \mathrm{~cm}^{3}
$$

Example 6

Find the volume of the right cylinder. Round to the nearest tenth.

$$
\begin{aligned}
8^{2}+h^{2} & =17^{2} \\
64+h^{2} & =280
\end{aligned}
$$

$V=\pi r^{2} h$
$V=\pi(4)^{2}(15)$
8 ft

$$
h=15
$$

$V \approx 754.0-f^{3}$

VOLUME OF A RIGHT CIRCULAR CONE $V=\frac{1}{3} B h$

VOLUME OF A RIGHT PYRAMID

$$
\mathrm{V}=\frac{1}{3} \mathrm{Bh}
$$

Example 7
Find the volume of a right circular cone with a radius of 5 centimeters and a height of 9 centimeters.
Round your answer to the nearest tenth.

$$
\begin{aligned}
& V=\frac{i}{3} \pi r^{2} h \\
& V=\frac{1}{3} \pi(5)^{2}(9) \\
& y \approx 235.6 \mathrm{~cm}^{3}
\end{aligned}
$$

Example 8
Find the volume of the solid. Round to the nearest tenth.

$$
\begin{aligned}
& V=\frac{1}{3} B h \quad B=120 \\
& V=\frac{1}{3}(120)(21) \\
& V=840 \mathrm{~cm}^{3}
\end{aligned}
$$

$B: A=b h$
$A=10 \cdot 12=120$

Example 9
Find the volume of the solid. Round to the nearest tenth.

$$
\begin{aligned}
& V=\frac{1}{3} \pi r^{2} h \\
& V=\frac{1}{3} \pi(6.7)^{2}(6) \\
& V \approx 282.1+\mathrm{fl}^{3}
\end{aligned}
$$

Example 10
Find the volume of the solid. Round to the nearest tenth.

$$
\begin{aligned}
& V=\frac{1}{3} B h \\
& V=\frac{1}{3}(54)(13) \\
& V=234 i^{3}
\end{aligned}
$$

$$
\begin{aligned}
& A=\frac{1}{2} b h \\
& A=\frac{1}{2} \cdot 12 \cdot 9=54
\end{aligned}
$$

VOLUME OF A SPHERE

$\mathrm{V}=\frac{4}{3} \pi \mathrm{r}^{3}$

Example 11

Find the volume of the sphere. Round to the nearest tenth.

$$
\begin{aligned}
& V=\frac{4}{3} \pi(18)^{3} \\
& V \approx 24,429.0 \mathrm{~cm}^{3}
\end{aligned}
$$

Example 12 The water tower to the right is made of a cone, a cylinder, and a hemisphere. Find its volume. Round to the nearest tenth.
Cone
$V=\frac{1}{3} \pi r^{2} h$
$V=\frac{1}{3} \pi(8.5)^{2}(9.1)$
$V \approx 688.5 \mathrm{ft}$
cylinder
$V=\pi r^{2} h$
$V=\pi(B .5)^{2}(25)$
$V \approx 56.74 .5 \mathrm{ft}^{3}$

$$
\begin{aligned}
& \frac{1}{2} \text { of sphere } \\
& V=\frac{1}{2} \cdot \frac{4}{3} \pi r^{3} \\
& V=\frac{2}{3} \pi(8.5)^{3}
\end{aligned}
$$

Total $V \rightarrow 688.5+5674.5+1286.2 \mathrm{~V} \approx 12.86 .2 \mathrm{ft}^{3}$.
$V \approx 7649.2 \div t^{3}$

