10.3 Inscribed Angles & Polygons

An <u>inscribed angle</u> is an angle whose vertex is on the circle and whose sides each contain chords of the circle.

An <u>intercepted arc</u> is the arc that lies in the interior of an inscribed angle and has endpoints on the angle.

Theorem 10.8

The measure of an inscribed angle is one-half the measure of its intercepted arc.

Example 1

Find each measure.

a)
$$m \angle T = \frac{1}{2}(48^{\circ}) = 24^{\circ}$$

b)
$$mQR 50^{\circ} \times 2 = 100^{\circ} = mQT$$

Example 2

Find each measure.

a)
$$m\widehat{AB} = 110^{\circ}$$

b)
$$m \angle D = 50^{\circ}$$

Example 3

Example 4

$$\frac{20^{\circ} J}{GH} = \frac{45^{\circ}}{40^{\circ}}$$

Example 5

In the circle to the right, mST = 68. Find $m \angle 1$ and $m \angle 2$.

$$M \le 1 = 34^{\circ}$$

 $M \le 2 = 34^{\circ}$

Theorem 10.9

If two inscribed angles of a circle or congruent circles intercept congruent arcs or the same arc, then the angles are congruent.

Example 6

Theorem 10.10

The hypotenuse of a right triangle is the diameter of a circle if and only if the triangle is inscribed in the circle.

Example 7

Example 8

In circle X, $m \angle 4 = 7x + 3$, $m \angle 5 = 7x + 3$, and $m \angle 1 = 5x$. Find $m \angle 1$, $m \angle 2$, $m \angle 4$, & $m \angle 5$.

$$m \le 1 = 5(6) = 30^{\circ}$$

 $m \le 2 = 60^{\circ}$
 $m \le 4 = 7(6) + 3 = 45^{\circ}$
 $m \le 5 = 45^{\circ}$

Theorem 10.11

If a quadrilateral is inscribed in a circle, then its opposite angles are supplementary.

Example 9

$$8m + 10m = 180$$

 $8m = 180$

$$m \angle F = \frac{130^{\circ}}{m \angle G} = \frac{100^{\circ}}{100^{\circ}}$$

$$m \angle H = \frac{50^{\circ}}{80^{\circ}}$$

$$m \angle I = \frac{80^{\circ}}{100^{\circ}}$$